The largest prime factors of consecutive integers

题目:The largest prime factors of consecutive integers

报告人:王志伟  (Université de Lorraine)

报告时间:2018. 9. 27 (周四),下午15:10-16:10

报告地点:知新楼B819

摘要:Let $P^+(n)$ denote the largest prime factor of the integer $n$. One might guess that the density of integers $n$ with $P^+(n)<P^+(n+1)$ is $1/2$. In fact, this conjecture was formulated in the correspondence of Erdős and Turán in the 1930s. More generally, we may consider this type of problem for $k-$consecutive integers with $k\geq 3$, or impose some conditions on the integer $n$. In this talk, we present the progress towards these questions.

邀请人: 吕广世